首页>师资队伍>师资概况>>
姓      名: 江峰
职      称: 教授
所在院系: 强度室
联系电话: 82668173
个人主页: http://gr.xjtu.edu.cn/web/jiangfeng
E-MAIL: jiangfeng@mail.xjtu.edu.cn
专业方向: 金属材料力学行为
个人详情

江峰: 男,1973年生。现为西安交通大学材料科学与工程学院,金属材料强度国家重点实验室 教授,博士生导师。2003年获西安交通大学材料科学与工程专业工学博士学位,2010年1月被聘为教授,2007年入选教育部新世纪优秀人才计划。近年来主持国家自然科学基金项目三项、国家“863”重点项目课题一项、军工973专题一项、博士点基金项目一项、横向课题多项,在研课题多项。在Acta Mater、APL、Nano lett、Nat.Mater、金属学报等国内外学术期刊上发表论文40余篇, 其中被SCI收录40余篇,SCI他引400余次。

研究领域或方向

l 研究领域一 非晶及高熵合金

l 研究领域二 粉末锻造及粉末注射成型

l 研究领域三  新型合金熔炼制备

l 研究领域四  电厂金属材料失效分析

教育及工作经历

1992.09—1996.07  本  科   江苏理工大学    材料学

1996.09—1999.03  硕  士   江苏理工大学    材料学

1999.03—2003.06  博  士   西安交通大学    材料学

2003.07—2005.09  博士后    西安交通大学    力  学

2005.07—2010.02  副教授   西安交通大学    材料学

2010.01— 至今    教  授   西安交通大学    材料学

2011.12—2012.12  美国俄亥俄州立大学     访问学者

 

     


学术成果

[36]   M.C. Li, M.Q. Jiang, S. Yang, F. Jiang*, L. He, J. Sun. Effect of strain rate on yielding strength of a Zr-based bulk metallic glass.Materials Science and Engineering A, 680 (2017) 21–26.

[35] M.C. Li, M.Q. Jiang, G. Li, L. He, J. Sun, F. Jiang*. Ductile to brittle transition of fracture of a Zr-based bulk metallic glass: Strain rate effect. Intermetallics,77(2016)34-40.

[34] T. Jiang,L.B. Chen,F. Jiang*,H.P Cai,J. Sun. Microstructural evolution and mechanical properties of a nickel-based superalloy through long-term service,Materials Science and Engineering A,656(2016)184-189.

 [33] X.L. Wang, F. Jiang*,H. Hahn,J. Li,H. Gleiter,J.Sun,J.X. Fang*,Sample Size Effects on Strength and Deformation Mechanism of Sc75Fe25 Nanoglass and Metallic Glass,Scripta Materialia,116(2016)95-99.

 [32] 柏琳娜, 刘福平, 王邃,江峰*, 孙军, 陈良斌, 王丰元. Fe-C-Cu 粉末锻造汽车发动机连杆的组织与力学性能.金属学报,52(2016)41-50

 [31] G. Li,Z.R. He,F. Jiang,*,Y.K. Wu, R. Wei,L. He,J. Sun. Stability of a metastable B2 phase embedded in a metallic glass matrix at liquid-nitrogen temperature,Materials Science and Engineering A,634(2015)99-102.

 [30] G. Li, M.Q. Jiang, F. Jiang,*, L. He, J. Sun*. The Ductile-to-Brittle Transition Behavior in a Zr-based Bulk Metallic Glass. Materials Science & Engineering A 625(2015)393-402.

 [29] X.L. Wang,F. Jiang,*, H. Hahn, J. Li*, H. Gleiter, J. Sun, J.X Fang*. Plasticity of a Scandium-based Nanoglass. Scripta Materialia98(2015)40-43.

 [28] M.Q. Jiang*, G. Wilde, J.H. Chen, C.B. Qu, S.Y. Fu, F. Jiang, L.H. Dai*. Cryogenic-temperature-induced transition from shear to dilatational failure in metallic glasses. Acta Materialia. 77 (2014) 248–257.

 [27] G. Li, M. Q. Jiang, F. Jiang*, L. He, J. Sun.Temperature-induced ductile-to-brittle transition of bulk metallic glasses. Applied Physics Letters. 102, 171901 (2013).

 [26] M.Q. Jiang, F. Jiang, V. Keryvin, J.X. Meng, J. Sun, L. H. Relation between ideal and real strengths of metallic glasses. Journal of Non-crystalline Solids. 358(2012)3119-3123.

 [25] G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun1,* and E. Ma*. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nature Materials.12344-350.

 [24] F. Jiang*, H.F. Wang, M.Q. Jiang, Y.L. Zhao, L. He, J. Sun. Ambient temperature embrittlement of a Zr-based bulk metallic glass.Materials Science & Engineering A. 549 (2012) 14– 19.

 [23] Fang. J.X*, Vainio. U, Puff. W, Wurschum. R, Wang. X. L, Wang. D, Ghafari. M, F. Jiang*, Sun. J, Hahn. H, Gleiter. H*. Atomic Structure and Structural Stability of Sc75Fe25 Nanoglasses. Nano Letters. 12:458-463.

 [22] F. Jiang, M.Q. Jiang, H.F. Wang, Y.L. Zhao, L. He, J. Sun*. Shear transformation zone volume determining ductile-brittle transition of bulk metallic glasses. Acta Materialia. 59 (2011) 2057–2068.

 [21] L.C. Zhang, F. Jiang*, Y.L. Zhao, J.F. Zhang, L. He, J. Sun. Stable shear of Cu46Zr47Al7 bulk metallic glass alloy by controlling temperature rise. Materials Science & Engineering A. 527 (2010) 4122-4127.

 [20] L.C. Zhang, F. Jiang*, Y.L. Zhao, S.B. Pan, L. He, J. Sun. Shear band multiplication aided by free volume under three-point bending.Journal of materials research. 25283-291.

 [19] S.P. Yang, H. Kou, G.J. Zhang, G. Liu, F. Jiang, J. Sun. Microstructural characterization of Mo-12Si-8.5B alloy subjected to diffusion annealing treatment. International Journal of Refractory Metals and Hard Materials. 28 (2010) 377-382.

 [18] Z.H. Han, L. He*, M.B. Zhong, F. Jiang, J. Sun. Synergistic effect of crystalline metal on the plasticity of bulk metallic glasses under uniaxial synchro-compression. Journal of materials research. 24(2009)3099-3107.

 [17] Z.H. Han, L. He*, Y.L. Hou, F. Jiang, J. Sun. Understanding the mechanism for the embrittlement of a monolithic Zr-based bulk metallic glass by oxygen. Intermetallics.17553.

 [16] F. Jiang, Y.L Zhao, L.C. Zhang, S.B. Pan, L. He, J. Sun*, Y.G. Zhou. The coupling effect of small nanocrystals and free volume on ductility of Cu46Zr47Al7 bulk metallic glass alloys. Advanced Engineering Materials. 11(2009)374-379.

 [15] F. Jiang, Y.L Zhao, L.C. Zhang, S.B. Pan, Y.G. Zhou, L. He, J. Sun*. Dependence of ductility on free volume in a Cu-Zr-based metallic glass. Advanced Engineering Materials. 11(2009)177-181.

 [14] G.J Zhang*, G. Liu, YJ. Sun, F. Jiang, L. Wang, R.H. Wang, J. Sun. Microstructure and strengthening mechanisms of molybdenum alloy wires doped with lanthanum oxide particles. International Journal of Refractory Metals and Hard Materials.27 (2009) 173.

 [13] L.C. Zhang, F. Jiang*, D.H. Zhang, L. He, J. Sun, J.T. Fan, Z.F. Zhang, In-situ precipitated nanocrystal beneficial to enhanced plasticity of Cu-Zr based bulk metallic glasses. Advanced Engineering Materials. 10943-950.

 [12] He. L*, Zhong. M.B, Han. Z.H, Zhao. Q, F. Jiang, Sun. J. Orientation effect of pre-introduced shear bands in a bulk-metallic glass on its "work-ductilising". Materials Science & Engineering A, 496(2008)285-290.

 [11] L He*, Z.H Han, F. Jiang, J. Sun. Crystallization kinetic characteristics of oxygen-induced I-phase and Zr2Cu phase in Zr65Cu27.5Al7.5 glassy alloy, Transactions of Nonferrous Metals Society of China. 18(2008) 610-616.

 [10] L. He*, Z.G. Wu, F. Jiang, J. Sun, Enhanced thermal stability of Zr65Cu17.5Ni10Al7.5 metallic glass at temperature range near glass transition by oxygen impurity. Journal of Alloys and Compounds. 456(2008) 181-186.

 [9] J.T. Fan, Z.F. Zhang*, F. Jiang, J. Sun, S.X. Mao, Ductile to brittle transition of Cu46Zr47Al7 metallic glass composites. Materials Science & Engineering A. 487(2008): 144-151.

 [8] J.T. Fan, F.F. Wu, Z.F. Zhang*, F. Jiang, J. Sun, S.X. Mao, Effect of microstructures on the compressive deformation and fracture behaviors of Cu46Zr47Al7 bulk metallic glass composites.Journal of Non-Crystalline Solids. 353(2007)4707-4717.

 [7] F. Jiang, D.H. Zhang, L.C. Zhang, Z.B. Zhang, L. He, J. Sun*, Z.F. Zhang, Microstructure evolution and mechanical properties ofCu46Zr47Al7 bulk metallic glass composite containing CuZr crystallizing phases. Materials Science & Engineering A. 467(2007)139-145.

 [6] F.F. Wu, Z.F. Zhang*, F. Jiang, et al. Multiplication of shear bands in metallic glass. Applied physics letters. 90(2007)191909.

 [5] F. Jiang, ZB Zhang, L He, et al, The effect of primary crystallizing phases on mechanical properties of Cu46Zr47Al7 bulk metallic glass composites. Journal of materials research. 21(2006) 2638-2645.

 [4] F. Jiang, ZJ Wang, ZB Zhang, J Sun*, Formation of Zr-based bulk metallic glasses from low purity materials by scandium addition.Scripta Materialia. 53(2005) 487-491.

 [3] F. Jiang, ZL Deng, J Sun*, JF Wei. Crack propagation resistance along strength mismatched bimetallic interface. Journal of Materials Engineering and Performance. 13(2004) 93-98.

 [2] F. Jiang, ZL Deng, J Sun*. Fatigue crack propagation normal to a plasticity mismatched bimaterial interface. Material Science & Engineering A. 356(2003)258 -266.

 [1] F. Jiang, K Zhao, J Sun*. Evaluation of Interfacial Crack Growth in Bimaterial Metallic Joints Loaded by Symmetric Three-Point Bending. Inter. J. of Pressure vessel and piping. 80(2003) 129-137.

 

实验室主要设备(提供对外服务与合作):

1、真空电弧熔炼坩埚/模具一体式浇铸炉;(最大坩埚直径60mm);

2、真空电弧熔炼坩埚/模具浇铸炉;(最大坩埚直径70mm);

3、真空电弧熔炼吸铸炉(直径1-5mm 圆柱或者 1-2mm厚 10mm宽板);

4、感应熔炼喷铸浇铸设备;(可进行喷铸、翻转浇铸,最大3Kg,1600度);

5、真空热挤压烧结炉(钼发热体,压力200T,1300度,热压温度700度以下);

6、高温真空热压烧结炉(石墨发热体,压力20T,2000度,热压烧结温度1600-1800度);

7、Satram DSC2000 复合热分析仪;(800度 1600度传感器);

8、TA Q2000 DSC (-70度—550度);

9、SANS小型万能试验机(0.5T,2T,具备液氮温度压缩、弯曲功能);

10、SANS CMT5105电子万能试验机(10T,具备液氮温度拉伸、压缩功能);

11、1200度管式淬火炉;

12、RETSCH公司PM100行星球磨仪(碳化钨);

13、美国NANOVEA微纳米压痕测试系统(另带50微米、200微米平压头);

14、高频疲劳试验机(20吨、10吨, 5吨),带高温加热装置(室温-1000度);

15、雾化制粉设备(感应熔炼、雾化制粉) 2-5公斤;

16:难溶金属熔炼:5KG磁悬浮熔炼炉(适合高温金属熔炼及金属提纯);

17:粉末冶金注射成型系统:MIM专用注射机、MIM专用酸催化脱脂炉和MIM脱脂烧结炉;

18:粉末锻造设备:高精度粉末冶金温压设备、连续油(气)淬真空炉、喷雾干燥机;